Training Iterations & Configurations

This document summarizes the different training configurations found in the configs/ directory. The primary models experimented with are DinoV2 and SigLIP.

DinoV2 Experiments

Base Model: facebook/dinov2-with-registers-base-imagenet1k-1-layer

Config FileTraining DatasetUnfrozen LayersAugmentationsNotes
dino_linear.yaml_dataset_train.json (3k)[] (None, linear probe)Basic (hflip)Initial baseline with frozen backbone.
dino_linear_aug.yaml_dataset_train.json (3k)[] (None, linear probe)Full list*Tests impact of heavy augmentation.
dino_hft.yaml_dataset_train.json (3k)[11]Basic (hflip)Fine-tunes the last transformer block.
dino_hft_aug.yaml_dataset_train.json (3k)[11]Full list*Fine-tuning with heavy augmentation.
dino_hft_6k.yaml_dataset_train_5k.json[11]Basic (hflip)Scales up dataset size.
dino_hft_6k_aug.yaml_dataset_train_5k.json[11]Full list*Scales up dataset with heavy augmentation.
dino_hft_6k_crop.yaml_dataset_train_5k.json[11]Basic (hflip)Uses return_cropped: true in dataloader.
dino_hft_12k.yaml_dataset_train_12k.json[11]Basic (hflip)Further scales up dataset size.

* Full list of augmentations typically includes: resize_crop, rotation, hflip, jitter, blur, bw.

SigLIP Experiments

Base Model: google/siglip2-base-patch16-224

Config FileTraining DatasetUnfrozen LayersAugmentationsNotes
siglip_linear.yaml_dataset_train.json (3k)[] (None, linear probe)BasicSigLIP baseline with frozen backbone.
siglip_head.yaml_dataset_train.json (3k)['head']BasicFine-tunes only the final classification head.
siglip_head_aug.yaml_dataset_train.json (3k)['head']Full list*Fine-tuning head with heavy augmentation.
siglip_head_6k.yaml_dataset_train_5k.json['head']Basic (hflip)Scales up dataset size for SigLIP.

Other Models / Evaluation Configs

  • aes_anatomy.yaml: Uses the pre-trained incantor/aes-pixai-1.2-anatomy-large-xgb model, likely for zero-shot evaluation, not for training within this repo.
  • dino_hft_infer.yaml: A configuration file specifically designed for running inference (c_infer.py) on new, unlabeled datasets to perform auto-labeling.